## EE330 HW3 Solutions Fall 2025

### Problem 1













# Problem 5





We can see that the figure of 1.31b) has 2 not gates and 2 T-gates.



Problem 7

For this stick diagram there are 3 errors:



- 1. No need of contact poly to n-active.
- 2. Contact needed for Metal 1 to n-active.
- 3. Contact needed for Metal 1 to p-active.

Assuming ON 0.18 $\mu$ m process,  $C_{IN}=1.5fF$ ,  $R_{SWP}=6k\Omega$ , and  $R_{SWN}=2k\Omega$ Total  $C_{IN}$  of 6 driven inverters =  $C_{IN}$  \* 6 inverters \* 2 transistors/inverter = 18fF =  $C_L$ If input steps from 2V to 0V, the transition at output will be from 0V to 2V, so we will be calculating  $t_{LH}$ 

From lecture,  $t_{LH} = C_L * R_{SWP} = 18 fF * 6 k\Omega = 108 picoseconds$ 

### Problem 9

For this problem, there are three concepts to keep in mind

- Any interconnect will act as a resistor
- Conductivity is the inverse of resistivity
- Interconnect area =  $5\mu m * 0.2\mu m = 1\mu m^2$

Resistance = 
$$\frac{\rho L}{A}$$

Resistance of first segment =  $\frac{1/38*(180+40)}{1}$  =  $\frac{220}{38}$  = 5.7895 ohms

Resistance of second segment =  $\frac{1/38*(80)}{1}$  =  $\frac{80}{38}$  = 2.1053 ohms

The voltage across the resistor =  $2V * \frac{50 \text{ ohms}}{(50+5.7895+2.1053)\text{ ohms}}$  = 1.727 $V$ 

b) Resistivity of copper = 
$$\frac{1}{58} \frac{ohm}{\mu m}$$
Resistance =  $\frac{\rho L}{A}$ 
Resistance of first segment =  $\frac{1/58*(180+40)}{1} = \frac{220}{58} = 3.7931 \ ohms$ 
Resistance of second segment =  $\frac{1/58*(80)}{1} = \frac{80}{58} = 1.3793 \ ohms$ 
The voltage across the resistor =  $2V * \frac{50 \ ohms}{(50+3.7931+1.3793)ohms} = 1.813V$ 

```
/*structural implementation of f-(!a*b*c)+(a*b*!c)
EE330 - Integrated Electronics/
`timescale 1ns/1ps
                                     //{\rm set} timescale to something nice for simulation
                                     //define module and IO
module hw3q10(A, B, C, F);
       input A, B, C;
                                     //define A, B, and C as inputs
       output F;
                                     //define F as an output
       wire and1, and2;
                                     //define intermediary wires to be used
                                     //and1 - A!*B*C
       and(and1, ~A, B, C);
       and(and2, A, B, ~C);
                                     //and2 - A*B*!C
       or(F, and1, and2);
                                     //F = and1 + and2 = (A!*B*C) + (A+B+!C)
                                     //end the module
/*behavioral implementation of f-(!a*b*c)+(a*b*!c)
EE330 - Integrated Electronics/
`timescale 1ns/1ps
                                             //set timescale to something nice for simulation
module hw3q10(A, B, C, f);
                                             //define module and IO
       input A, B, C;
                                             //define A, B, and C as inputs
       output F;
                                             //define F as an output
       reg out;
                                             //define an output register for used
       assign F - out;
                                             // {\it assign} output register to given output
       always @ (A or B or C) begin
                                             //when inputs change, execute the following
               out = (~A&B&C) + (A&B&~C);
                                             //f - (!A*B*C)+(A*B*!C)
       end
                                             //end of preceding always block
endmodule
                                             //end the module
/*standard 3-input logic testbench
EE330 - Integrated Electronics
Nickolas Moser
February 2, 2022*/
`timescale 1ns/1ps
                                             //set timescale to something nice to simulate
module standard_tb();
                                            //instantiate testbench module
```

